Заголовок: Реальная версия ЕНТ по математике 2021 года. Вариант 4272
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 24

Реальная версия ЕНТ по математике 2021 года. Вариант 4272

1.  
i

Из 200 шаров — 16 крас­ные. Из всех шаров крас­ные со­став­ля­ют?

1) 16%
2) 18%
3) 6%
4) 12%
5) 8%
2.  
i

Ре­ши­те урав­не­ние: 4x в сте­пе­ни 4 минус 12x в квад­ра­те плюс 9 = 0.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби и  минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
3.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x минус 3y= минус 1, дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби =0,75. конец си­сте­мы .

1) (1; 5)
2) (0; −7)
3) (4; 3)
4) (3; 4)
5) (1; 3)
4.  
i

После на­цен­ки 35% цена из­де­лия уве­ли­чи­лась на 196 тг. Най­ди­те пер­во­на­чаль­ную цену из­де­лия.

1) 630 тг
2) 720 тг
3) 840 тг
4) 560 тг
5) 540 тг
5.  
i

Най­ди­те наи­мень­шее ре­ше­ние не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 25.

1) 0
2) 1
3) −2
4) 2
5) −1
6.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та мень­ше 3, ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 4 конец ар­гу­мен­та боль­ше 0. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2; 10 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1,6; 2,5 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1; 3 пра­вая квад­рат­ная скоб­ка
7.  
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 5, раз­ность про­грес­сии d = −7. Най­ди­те ко­ли­че­ство чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии, если a_n= минус 163.

1) 36
2) 41
3) 25
4) 30
5) 33
8.  
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .

1) 23
2) −10
3) 15
4) 18
5) −15
9.  
i

Даны век­то­ры: \veca левая круг­лая скоб­ка 0; 5 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 7; минус 1 пра­вая круг­лая скоб­ка . Ко­си­нус угла между век­то­ра­ми  левая круг­лая скоб­ка \veca плюс \vecb пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка \veca минус \vecb пра­вая круг­лая скоб­ка равен?

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 221 конец ар­гу­мен­та конец дроби
2)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 10 конец дроби
3)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 5 конец дроби
4)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 221 конец ар­гу­мен­та конец дроби
5)  минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 10 конец дроби
10.  
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.

1) 216 см3.
2) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 126 см3.
4) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
5) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
11.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.

1) 32
2) 16
3) 12
4) 24
5) 8
12.  
i

Число n со­став­ля­ет p% от числа a. Число a равно

1) a= дробь: чис­ли­тель: 100 p, зна­ме­на­тель: n конец дроби
2) a= дробь: чис­ли­тель: 100, зна­ме­на­тель: n p конец дроби
3) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: 2 p конец дроби
4) a= дробь: чис­ли­тель: 100 p, зна­ме­на­тель: 2 n конец дроби
5) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: p конец дроби
13.  
i

Най­ди­те наи­мень­шее целое ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 5 минус дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 4x минус 7, зна­ме­на­тель: 2x плюс 3 конец дроби мень­ше 2 конец си­сте­мы .

1) −2
2) −1
3) 1
4) 2
5) 0
14.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).

1) 1,5 кв. ед.
2) 3 кв. ед.
3) 9 кв. ед.
4) 6 кв. ед.
5) 4,5 кв. ед.
15.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
16.  
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно

1)  дробь: чис­ли­тель: 3 x плюс 1, зна­ме­на­тель: y минус 2 конец дроби
2)  дробь: чис­ли­тель: 2 x плюс y, зна­ме­на­тель: x плюс 21 конец дроби
3)  дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: 2 x плюс y конец дроби
4)  дробь: чис­ли­тель: x плюс 2 y, зна­ме­на­тель: x плюс 3 конец дроби
5)  дробь: чис­ли­тель: 3 x плюс 1, зна­ме­на­тель: x минус 2y конец дроби
17.  
i

В круге с цен­тром в точке O и ра­ди­у­сом 4 угол MOK равен 90°. Пло­щадь за­кра­шен­ной части круга равна

1) 8 левая круг­лая скоб­ка Пи минус 1 пра­вая круг­лая скоб­ка
2) 4 левая круг­лая скоб­ка Пи минус 2 пра­вая круг­лая скоб­ка
3) 4 левая круг­лая скоб­ка Пи минус 4 пра­вая круг­лая скоб­ка
4) 8 левая круг­лая скоб­ка Пи минус 2 пра­вая круг­лая скоб­ка
5) 2 левая круг­лая скоб­ка Пи минус 4 пра­вая круг­лая скоб­ка
18.  
i

Ту­рист про­шел 6 км, под­ни­ма­ясь в гору, и 3 км по спус­ку с горы, за­тра­тив на весь путь 2 часа. Ско­рость на спус­ке на 2 км/ч боль­ше ско­ро­сти на подъ­еме. Опре­де­ли­те, сколь­ко вре­ме­ни ту­рист по­тра­тит на об­рат­ный путь, если ско­ро­сти на спус­ке и на подъ­еме оста­нут­ся преж­ни­ми.

1) 1,75 ч
2) 1,6 ч
3) 2 ч
4) 1,25 ч
5) 1,5 ч
19.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 6 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 12 конец ар­гу­мен­та мень­ше x минус 1,2x минус 3 мень­ше 33. конец си­сте­мы .

1) (12; 18)
2) [12; 18)
3) [12; 20)
4) [12; 18]
5) (12; 18]
20.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 4 см, а сто­ро­на ос­но­ва­ния — 6 см. Най­ди­те объём пи­ра­ми­ды.

1) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
2) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
3) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
4) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
5) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та см в кубе
21.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?

1) 12 ку­соч­ков
2) 6 ку­соч­ков
3) 10 ку­соч­ков
4) 9 ку­соч­ков
5) 5 ку­соч­ков
22.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Най­ди­те объём всего торта  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 15 500 см3
2) 14 000 см3
3) 13 500 см3
4) 13 000 см3
5) 12 500 см3
23.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Для упа­ков­ки тор­тов фаб­ри­ка из­го­тав­ли­ва­ет ко­роб­ки в виде пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да. Для дан­но­го торта нужно из­го­то­вить ко­роб­ку объём ко­то­рой равен?

1) 1,8 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
2) 1,6 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
3) 1,8 умно­жить на 10 в кубе см в кубе
4) 9 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
5) 1,6 умно­жить на 10 в кубе см в кубе
24.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.

1) 450 г
2) 300 г
3) 250 г
4) 350 г
5) 400 г
25.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Если  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть торта по­ме­стить в пря­мо­уголь­ный кон­тей­нер раз­ме­ра­ми 12 см × 10 см × 10 см. Какой объём кон­тей­не­ра ока­жет­ся не­за­пол­нен­ным?

1) 70 см3
2) 80 см3
3) 65 см3
4) 85 см3
5) 75 см3
26.  
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те те, 35% ко­то­рых яв­ля­ют­ся целым чис­лом.

1) 50
2) 60
3) 40
4) 30
5) 90
6) 20
7) 70
8) 10
27.  
i

Кор­ня­ми урав­не­ния  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка = 0 яв­ля­ют­ся

1) −5
2) −1
3) 1
4) 3
5) −4
6) 0
7) 5
8) 4
28.  
i

Вы­бе­ри­те из ниже пред­ло­жен­ных от­ве­тов зна­че­ния вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (xn; yn) — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x плюс y плюс xy = 11,x плюс y плюс 1 = xy. конец си­сте­мы .

1) 4
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) −2
7)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
8)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
29.  
i

За три часа буль­до­зер раз­ров­нял 3 км2 ас­фаль­та. Из пред­ло­жен­ных от­ве­тов ука­жи­те пло­щадь, со­от­вет­ству­ю­щую его про­из­во­ди­тель­но­сти в те­че­ние 5 часов.

1) 11 км2
2) 9 км2
3) 4 км2
4) 7 км2
5) 8 км2
6) 10 км2
7) 5 км2
8) 6 км2
30.  
i

Ре­ше­ни­ем не­ра­вен­ства 13x минус 15 мень­ше или равно 2x в квад­ра­те яв­ля­ет­ся про­ме­жу­ток?

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
31.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: y конец дроби пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x минус y = 4,3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27. конец си­сте­мы .

1)  левая круг­лая скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 3 ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5 ; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1 ; 2 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
7)  левая квад­рат­ная скоб­ка минус 2 ; 2 пра­вая квад­рат­ная скоб­ка
8)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
32.  
i

Най­ди­те про­из­вод­ную функ­ции: y = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: 15 минус x, зна­ме­на­тель: x плюс 6 конец дроби .

1)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 9 x минус 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
2)  дробь: чис­ли­тель: 10, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 21 конец дроби
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те минус 9 x плюс 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
4)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 15 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
5)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 15 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
6)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те минус 9 x минус 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
7)  дробь: чис­ли­тель: 21, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 9 x плюс 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 10 конец дроби
8)  дробь: чис­ли­тель: 10, зна­ме­на­тель: левая круг­лая скоб­ка x в квад­ра­те минус 9 x минус 90 пра­вая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 21 конец дроби
33.  
i

Одна из диа­го­на­лей па­рал­ле­ло­грам­ма пер­пен­ди­ку­ляр­на сто­ро­не. Най­ди­те эту диа­го­наль и пло­щадь па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 16 см, а раз­ность смеж­ных сто­рон равна 2 см.

1) 36 см2
2) 80 см2
3) 13 см
4) 5 см
5) 4 см
6) 12 см
7) 12 см2
8) 6 см2
34.  
i

Ма­те­ри­аль­ная точка дви­жет­ся со ско­ро­стью  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1 минус 2 синус в квад­ра­те t. Най­ди­те ин­тер­вал, в ко­то­рый вхо­дит зна­че­ние пути, прой­ден­но­го ма­те­ри­аль­ной точ­кой за про­ме­жу­ток вре­ме­ни от t = 0 до t = 0,25 Пи .

1)  левая квад­рат­ная скоб­ка 1; 1,5 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; минус 0,5 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 0,75; 0,75 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; минус 0,25 пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка 0; 1,5 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка 0,5; 1 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка 0,5; 1,25 пра­вая квад­рат­ная скоб­ка
35.  
i

Ос­но­ва­ни­ем пря­мой приз­мы слу­жит рав­но­бед­рен­ная тра­пе­ция ABCD со сто­ро­на­ми AB = CD = 13 см, BC = 11 см, AD = 21 см. Пло­щадь ее диа­го­наль­но­го се­че­ния равна 180 см2. Най­ди­те пло­щадь пол­ной по­верх­но­сти приз­мы.

1) 522 см2
2) 256 см2
3) 144 см2
4) 1528 см2
5) 1728 см2
6) 129 см2
7) 192 см2
8) 906 см2