Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 6459
1.  
i

Число, в раз­ло­же­нии ко­то­ро­го на про­стые мно­жи­те­ли есть ровно три трой­ки.

1) 51
2) 75
3) 108
4) 62
2.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 минус 2i пра­вая круг­лая скоб­ка плюс 2 левая круг­лая скоб­ка 5 плюс i пра­вая круг­лая скоб­ка минус 14.

1) z= минус 1 плюс 2i
2) z=1
3) z=1 минус i
4) z= минус 1
3.  
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 29 умно­жить на 46 плюс 464 пра­вая круг­лая скоб­ка :899 плюс 675.

1) 678
2) 677
3) 676
4) 682
4.  
i

Опре­де­ли­те чис­ло­вое зна­че­ние вы­ра­же­ния  синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 210 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на тан­генс 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
5.  
i

Пред­ставь­те бес­ко­неч­ную де­ся­тич­ную пе­ри­о­ди­че­скую дробь 0,(03) в виде обык­но­вен­ной дроби.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 29 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 27 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 33 конец дроби
6.  
i

Ре­ши­те урав­не­ние: \abs2x минус 1=4.

1) 1
2) 1,5
3) 0
4) 2,5; −1,5
7.  
i

Най­ди­те (x − y), если пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 25,xy в квад­ра­те = 5. конец си­сте­мы .

1) 4
2) −5
3) −4
4) 5
8.  
i

Най­ди­те пре­дел в точке \undersetx\to 2\mathop\lim дробь: чис­ли­тель: 4x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те минус 16x плюс 16 конец дроби .

1)  минус бес­ко­неч­ность
2) 1
3)  бес­ко­неч­ность
4) 2
9.  
i

Bыра­зи­те в ра­ди­а­нах ве­ли­чи­ну внут­рен­не­го угла пра­виль­но­го тре­уголь­ни­ка.

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
10.  
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна

1) 0,5 м
2) 0,4 м
3) 0,45 м
4) 0,6 м
11.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
12.  
i

Bычис­ли­те зна­че­ние суммы целых чисел, удо­вле­тво­ря­ю­щих си­сте­ме не­ра­венств:  си­сте­ма вы­ра­же­ний 2x плюс 5 мень­ше 3,x в квад­ра­те минус 5x мень­ше или равно 24. конец си­сте­мы .

1) −4
2) −5
3) 6
4) 5
13.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x плюс 4,y=3x минус 5,0 мень­ше или равно x мень­ше или равно 9.

1) 42
2) 40,5
3) 40
4) 36
14.  
i

Из 12 де­ву­шек и 10 юно­шей вы­би­ра­ют ко­ман­ду, со­сто­я­щую из 5 че­ло­век. Сколь­ки­ми спо­со­ба­ми её можно вы­брать так, чтобы в неё вхо­ди­ло не более трёх юно­шей?

1) 23 562
2) 14 324
3) 21 766
4) 25 682
15.  
i

Чему равен угол \angle MON= альфа , если из­вест­но, что угол \angle KNM=55 гра­ду­сов .

1) 115°
2) 110°
3) 65°
4) 130°
16.  
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.

1) 39
2) 15
3) 27
4) 37
17.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
18.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни y умно­жить на 2 в сте­пе­ни x = 972,y минус x = 3. конец си­сте­мы .

1) (3; 1)
2) (4; 3)
3) (2; 5)
4) (2; 4)
19.  
i

Ука­жи­те одну из пер­во­об­раз­ных для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 6, зна­ме­на­тель: x конец дроби , при x боль­ше 0.

1) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби на­ту­раль­ный ло­га­рифм x
2) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = на­ту­раль­ный ло­га­рифм x
3) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6 на­ту­раль­ный ло­га­рифм x
4) F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 6 на­ту­раль­ный ло­га­рифм x
20.  
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.

1) 32 см
2) 26 см
3) 30 см
4) 27 см
21.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
22.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?

1) 120
2) 320
3) 5040
4) 1400
23.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела вра­ще­ния. сколь­ко таких спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?

1) 18
2) 60
3) 9
4) 45
24.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела: одно тело вра­ще­ния и один мно­го­гран­ник. Сколь­ко спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?

1) 196
2) 92
3) 108
4) 144
25.  
i

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность раз­ме­ще­ния на пер­вой полке двух тел вра­ще­ния (округ­ли­те до сотых)?

1) 0,45
2) 0,63
3) 0,24
4) 0,16
26.  
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .

1) 1250
2) 1372
3) 1260
4) 25 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  29 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
6) 1360
27.  
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния

 синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка Пи минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка Пи плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка 0,75; 7 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 100; 1000 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка минус 150; 0 пра­вая круг­лая скоб­ка
28.  
i

После при­ве­де­ния к од­но­чле­нам стан­дарт­но­го вида най­ди­те те, у ко­то­рые сте­пень од­но­чле­на равна 10.

1)  минус 9 x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка y в кубе x в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка y в квад­ра­те
2) 2,4 x в квад­ра­те y в кубе умно­жить на 7 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
3) 2 x в квад­ра­те y в кубе умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
4)  минус 0,4 x левая круг­лая скоб­ка x y в кубе пра­вая круг­лая скоб­ка в квад­ра­те
5)  минус 3 x в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
6)  минус 0,4 x y в кубе умно­жить на левая круг­лая скоб­ка x в квад­ра­те y пра­вая круг­лая скоб­ка в квад­ра­те
29.  
i

Най­ди­те ин­тер­вал, ко­то­ро­му при­над­ле­жит зна­че­ние ин­те­гра­ла  S = ин­те­грал пре­де­лы: от минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби до дробь: чис­ли­тель: Пи , 4, зна­ме­на­тель: ко­си­нус x синус x d x конец дроби .

1)  левая квад­рат­ная скоб­ка минус 1 ; минус 0,5 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1 ; минус 0,25 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 0,5 ; 0,5 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 1 ; 0 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 0,5;1 пра­вая круг­лая скоб­ка
6)  левая фи­гур­ная скоб­ка 1;1,5 пра­вая круг­лая скоб­ка
30.  
i

Най­ди­те угол между век­то­ра­ми \overrightarrowAB и \overrightarrowCD, если \overrightarrowAB= левая круг­лая скоб­ка 1;2;3 пра­вая круг­лая скоб­ка ; \overrightarrowCD= левая круг­лая скоб­ка 5;0; минус 12 пра­вая круг­лая скоб­ка .

1)  минус арк­ко­си­нус дробь: чис­ли­тель: 20, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 406 конец ар­гу­мен­та конец дроби
2)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 13 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
3)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 13 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
4)  минус арк­си­нус дробь: чис­ли­тель: 20, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 406 конец ар­гу­мен­та конец дроби
5)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 13 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 182 конец дроби пра­вая круг­лая скоб­ка
6)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 13 ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 91 конец дроби пра­вая круг­лая скоб­ка
31.  
i

Ре­ши­те урав­не­ние: z в кубе =i.

1) z= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
2) z=i
3) z= минус i
4) z= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
5) z= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
6) z= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
32.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2y = минус 4x плюс 6,y = 4x плюс 3. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 10 конец дроби ; минус дробь: чис­ли­тель: 19, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби ; минус дробь: чис­ли­тель: 38, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0 ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,4 ; минус 3,8 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 4 ; минус 38 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 0,4 ; 3,8 пра­вая круг­лая скоб­ка
33.  
i

K плос­ко­сти квад­ра­та ABCD про­ве­ден пер­пен­ди­ку­ляр AM. Най­ди­те рас­сто­я­ние от точки M до вер­ши­ны С, если сто­ро­на квад­ра­та равна 3 см, а рас­сто­я­ние от точки M до плос­ко­сти квад­ра­та равно 4 см.

1) 8 см
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та см
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та см
5) 10 см
6) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
34.  
i

Най­ди­те по­ло­жи­тель­ное число С, ко­то­рое нужно рас­по­ло­жить между чис­ла­ми А = 81 и В = 9 так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии.

1) 18
2) 27
3) 45
4) 36
35.  
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.

1) 256 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
2) 85 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та Пи
3) 256 Пи
4) 128 ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та Пи
5) 255 ко­рень из: на­ча­ло ар­гу­мен­та: 3 Пи конец ар­гу­мен­та
6) 16 ко­рень из: на­ча­ло ар­гу­мен­та: 256 конец ар­гу­мен­та Пи