Вариант № 11803

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип Д36 A36 № 6917
i

Одно число мень­ше дру­го­го на 42, что со­став­ля­ет 14% боль­ше­го числа. Най­ди­те мень­шее число.



2
Тип Д37 A37 № 4069
i

Вы­чис­ли­те:  левая круг­лая скоб­ка i в сте­пе­ни левая круг­лая скоб­ка 29 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 109 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка i в сте­пе­ни левая круг­лая скоб­ка 189 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 33 пра­вая круг­лая скоб­ка .



3
Тип 1 № 3306
i

Вы­чис­ли­те:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка 9 плюс ло­га­рифм по ос­но­ва­нию 2 16.



4
Тип 3 № 1938
i

Вы­чис­ли­те  арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби плюс арк­тан­генс левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 3 конец дроби пра­вая круг­лая скоб­ка



5
Тип 22 № 3856
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию: 2x плюс 3y= минус 7x плюс 8y плюс 4.



6
Тип 12 № 2470
i

Ре­ши­те не­ра­вен­ство: |x плюс 5| мень­ше или равно 7.



7
Тип 6 № 1941
i

Най­ди­те число А, если A = x умно­жить на y, где (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 9,xy в квад­ра­те = 3. конец си­сте­мы .



8
Тип Д38 A38 № 4122
i

Най­ди­те пре­дел в точке \undersetx\to 0\mathop\lim дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 1 плюс 6x конец ар­гу­мен­та плюс 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 3 конец дроби .



9
Тип 13 № 2404
i

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 12 равна



10
Тип 15 № 2240
i

Из точки M про­ве­ден пер­пен­ди­ку­ляр MK, рав­ный 6 см к плос­ко­сти квад­ра­та ACPK. На­клон­ная MC об­ра­зу­ет с плос­ко­стью квад­ра­та угол 60°. Най­ди­те сто­ро­ну квад­ра­та.



11
Тип 10 № 6944
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



12
Тип 9 № 3909
i

Ре­ши­те си­сте­му не­ра­венств: Not match begin/end



13
Тип 18 № 4153
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс x плюс 4,y=x плюс 4, минус 4 мень­ше или равно x мень­ше или равно 0.



14
Тип Д39 A39 № 6808
i

Фаб­ри­ка вы­пус­ка­ет сумки. В сред­нем 8 сумок из 100 имеют скры­тые де­фек­ты. Най­ди­те ве­ро­ят­ность того, что куп­лен­ная сумка ока­жет­ся без де­фек­тов.



15
Тип Д40 A40 № 1983
i

Чему равен угол \angle KON = альфа , если из­вест­но, что угол \angle KMN = 65 гра­ду­сов.



16
Тип Д41 A41 № 1950
i

Най­ди­те рас­сто­я­ние от точки A (1; −2; 3) до ко­ор­ди­нат­ной пря­мой Oy



17
Тип 23 № 6966
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



18
Тип 17 № 3448
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний y минус x=1, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12. конец си­сте­мы .



19
Тип 7 № 4178
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 4 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



20
Тип 8 № 3280
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна



21
Тип 26 № 3970
i
Развернуть

Пло­щадь до­ро­ги равна



22
Тип 27 № 3971
i
Развернуть

Общая пло­щадь ого­ро­да и до­ро­ги равна



23
Тип 28 № 3972
i
Развернуть

Пло­щадь ого­ро­да, за­са­жен­ная ово­ща­ми, равна



24
Тип 29 № 3973
i
Развернуть

B целях рас­ши­ре­ния ого­ро­да все его раз­ме­ры уве­ли­чи­ли в два раза. Най­ди­те пло­щадь но­во­го ого­ро­да вме­сте с до­ро­гой.



25
Тип 30 № 3974
i
Развернуть

Hапи­ши­те фор­му­лу вы­чис­ле­ния общей пло­ща­ди ого­ро­да S (x) вклю­чая до­ро­гу, если в целях рас­ши­ре­ния ого­ро­да все его раз­ме­ры уве­ли­чи­ли на х мет­ров.



26
Тип 36 № 3229
i

Oдно из двух на­ту­раль­ных чисел боль­ше дру­го­го на 13. Най­ди­те эти числа, если их про­из­ве­де­ние равно 48.



27
Тип Д42 A42 № 4627
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка 3 тан­генс дробь: чис­ли­тель: 2x, зна­ме­на­тель: 3 конец дроби боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та \ пра­вая квад­рат­ная скоб­ка .



28
Тип Д43 A43 № 3596
i

Упро­сти­те вы­ра­же­ние

 4 левая круг­лая скоб­ка 3 a минус 2,5 b пра­вая круг­лая скоб­ка минус 11 левая круг­лая скоб­ка a минус 2 b пра­вая круг­лая скоб­ка минус 65 a b минус 13 левая круг­лая скоб­ка b минус 5 a b пра­вая круг­лая скоб­ка

и най­ди­те его зна­че­ние при a= минус 1 и b=2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния.



29
Тип Д44 A44 № 3915
i

Ука­жи­те гра­фи­ки функ­ции вида y= ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та .

A)

B)

C)

D)

E)

F)



30
Тип Д45 A45 № 6876
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 4. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.



31
Тип Д46 A46 № 4093
i

Ре­ши­те урав­не­ние: z в квад­ра­те минус 4z плюс 5=0.



32
Тип Д47 A47 № 3371
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит про­из­ве­де­ние x · y, где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x в квад­ра­те плюс y в квад­ра­те пра­вая круг­лая скоб­ка =2, ло­га­рифм по ос­но­ва­нию 2 x минус 2= ло­га­рифм по ос­но­ва­нию 2 3 минус ло­га­рифм по ос­но­ва­нию 2 y. конец си­сте­мы .



33
Тип Д48 A48 № 2043
i

Най­ди­те сто­ро­ны тре­уголь­ни­ка MKP, если \angle M = 15 гра­ду­сов и \angle P = 30 гра­ду­сов , а вы­со­та MH = 4 см.



34
Тип 20 № 3808
i

Сумма всех чисел ряда 6; 2;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби ; ... равна



35
Тип 40 № 3930
i

Объем ко­ну­са равен 27. На вы­со­те ко­ну­са лежит точка и делит её в от­но­ше­нии 2 : 1 счи­тая от вер­ши­ны. Через точку про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.


Завершить работу, свериться с ответами, увидеть решения.