Заголовок: Реальная версия ЕНТ по математике 2021 года. Вариант 4240
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 19

Реальная версия ЕНТ по математике 2021 года. Вариант 4240

1) 7ac в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка
2) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка минус 10 пра­вая круг­лая скоб­ка
3) 7a в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 7ac в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
5) 7a в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка c в сте­пе­ни левая круг­лая скоб­ка 21 пра­вая круг­лая скоб­ка
1)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби и  минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби
3.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
5) (55; −33)
1) 40 кг
2) 69 кг
3) 36 кг
4) 38 кг
5) 37 кг
1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
1)  левая круг­лая скоб­ка минус 1; 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2; 10 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1,6; 2,5 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1; 3 пра­вая квад­рат­ная скоб­ка

Какая из пред­ло­жен­ных по­сле­до­ва­тель­но­стей за­да­ет­ся фор­му­лой: b_n = 2 в сте­пе­ни левая круг­лая скоб­ка n минус 3 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 1; 2; 4;...
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус 1; минус 2; минус 4;...
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус 1; минус 2; минус 4;...
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ;...
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 1; 2; 4;...
1)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 2 ко­рень из 3
3)  минус 2 ко­рень из 3
4)  ко­рень из 3
5)  минус ко­рень из 3
1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 221 конец ар­гу­мен­та конец дроби
2)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 10 конец дроби
3)  дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 5 конец дроби
4)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 221 конец ар­гу­мен­та конец дроби
5)  минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 10 конец дроби

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.

1) 16 ко­рень из 2 см3
2) 54 см3
3) 48 см3
4) 54 ко­рень из 3 см3
5) 48 ко­рень из 3 см3
11.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.

1) 32
2) 16
3) 12
4) 24
5) 8
1) 2
2) 4
3) 0
4) 2,5
5) 3
1)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
5)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
1)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
1) 100°
2) 140°
3) 138°
4) 124°
5) 155°
16.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус 54 гра­ду­сов умно­жить на синус 18 гра­ду­сов .

1) 0,125
2) 0,5
3) 1
4) 0,25
5) 0,75
17.  
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен

1)  дробь: чис­ли­тель: 84, зна­ме­на­тель: 85 конец дроби
2)  дробь: чис­ли­тель: 27, зна­ме­на­тель: 57 конец дроби
3)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 71 конец дроби
4)  дробь: чис­ли­тель: 83, зна­ме­на­тель: 170 конец дроби
5)  дробь: чис­ли­тель: 42, зна­ме­на­тель: 45 конец дроби
18.  
i

Ту­рист про­шел 6 км, под­ни­ма­ясь в гору, и 3 км по спус­ку с горы, за­тра­тив на весь путь 2 часа. Ско­рость на спус­ке на 2 км/ч боль­ше ско­ро­сти на подъ­еме. Опре­де­ли­те, сколь­ко вре­ме­ни ту­рист по­тра­тит на об­рат­ный путь, если ско­ро­сти на спус­ке и на подъ­еме оста­нут­ся преж­ни­ми.

1) 1,75 ч
2) 1,6 ч
3) 2 ч
4) 1,25 ч
5) 1,5 ч
1)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 3; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 3 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Сто­ро­ны ос­но­ва­ний пра­виль­ной усе­чен­ной тре­уголь­ной пи­ра­ми­ды 4 дм и 12 дм. Бо­ко­вая грань об­ра­зу­ет с боль­шим ос­но­ва­ни­ем угол 60°. Най­ди­те вы­со­ту.

1) 5 дм
2) 4 дм
3) 3 дм
4) 7 дм
5) 6 дм

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность на­у­гад взять фи­гу­ру, яв­ля­ю­щу­ю­ся телом вра­ще­ния?

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 14
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби 14
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: конец дроби 14

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?

1) 120
2) 320
3) 5040
4) 1400
5) 720

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела вра­ще­ния. сколь­ко таких спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?

1) 18
2) 60
3) 9
4) 27
5) 45

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела: одно тело вра­ще­ния и один мно­го­гран­ник. Сколь­ко спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?

1) 196
2) 92
3) 108
4) 48
5) 144

В ка­би­не­те ма­те­ма­ти­ки име­ет­ся шкаф с тремя пол­ка­ми для мо­де­лей объ­ем­ных раз­но­цвет­ных фигур — пи­ра­мид, шара, па­рал­ле­ле­пи­пе­да, ко­ну­са, приз­мы, тет­ра­эд­ра, ци­лин­дра общим ко­ли­че­ством 14 штук (по две мо­де­ли каж­до­го вида).

Ка­ко­ва ве­ро­ят­ность раз­ме­ще­ния на пер­вой полке двух тел вра­ще­ния (округ­ли­те до сотых)?

1) 0,45
2) 0,63
3) 0,24
4) 0,72
5) 0,16
1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (−2; 5)
5) (−3; 0)
6) (0; 4)
7) (4; 10)
8) (3; 8)
1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) −2
3) 4
4)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
5)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
7)  левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
8)  ко­рень из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 5x минус 2y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x = y,2 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 6. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 0; 5 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 3; 5 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка минус 2; 2 пра­вая круг­лая скоб­ка

Для за­сол­ки огур­цов нужно 250 г соли, что со­став­ля­ет 8% массы со­ле­ных огур­цов. Най­ди­те массу со­ле­ных огур­цов.

1) 3250 г
2) 4000 г
3) 4 кг
4) 3,125 кг
5) 4250 г
6) 3125 г
7) 3,25 кг
8) 4,25 кг
1) 88
2) −500
3) 90
4) 0
5) 8
6) 95
7) 500
8) −45

Какие из пе­ре­чис­лен­ных зна­че­ний вы­ра­же­ний x плюс y, x минус y и xy верны, если x и y яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = 3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 4y плюс 7 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка ,x плюс 2y = 4 конец си­сте­мы .

1) x y= минус 0,5
2) xy=1,5
3) x плюс y=2,5
4) x минус y= минус 3,5
5) x минус y=2,5
6) x плюс y= минус 1,5
7) xy=2
8) x плюс y=3,5
1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 1
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
3) 1
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
5) 2
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
7) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
8) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
1) 36 см2
2) 80 см2
3) 13 см
4) 5 см
5) 4 см
6) 12 см
7) 12 см2
8) 6 см2
1)  левая квад­рат­ная скоб­ка 1; 1,5 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; минус 0,5 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 0,75; 0,75 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; минус 0,25 пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка 0; 1,5 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка 0,5; 1 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка 0,5; 1,25 пра­вая квад­рат­ная скоб­ка

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров \overrightarrowAK и  \overrightarrowFB.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 0; 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 1 ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 1 ; минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби ; 0 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ; 1 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка минус 1 ; 0 ; 1 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 0 ; 1 пра­вая круг­лая скоб­ка