Вариант № 27426

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3457
i

Упро­сти­те вы­ра­же­ние:  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та умно­жить на дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 64 конец ар­гу­мен­та конец дроби умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .



2
Тип 2 № 1939
i

Если a плюс b = минус 3, ab = 2, то зна­че­ние вы­ра­же­ния a в квад­ра­те b плюс ab в квад­ра­те равно



3
Тип 3 № 1958
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .



4
Тип 4 № 3845
i

Раз­ло­жи­те мно­го­член на мно­жи­те­ли: ax минус ay плюс xb минус yb.



5
Тип 5 № 1980
i

Pешите урав­не­ние \left|x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби | = целая часть: 7, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 и най­ди­те сумму его кор­ней



6
Тип 6 № 1961
i

Най­ди­те (x − y), если пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 25,xy в квад­ра­те = 5. конец си­сте­мы .



7
Тип 7 № 4186
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 1954
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен



9
Тип 9 № 2541
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .



10
Тип 10 № 3913
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).



11
Тип 11 № 3284
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та конец дроби при x при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .



12
Тип 12 № 2086
i

Из ниже пред­ло­жен­ных ва­ри­ан­тов чисел ука­жи­те число, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0.



13
Тип 13 № 1969
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна



14
Тип 14 № 2549
i

Най­ди­те наи­мень­шее целое число, удо­вле­тво­ря­ю­щее не­ра­вен­ству:  при­над­ле­жит t\limits_0 в сте­пе­ни t левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка dx мень­ше или равно 4.



15
Тип 15 № 2615
i

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.



16
Тип 16 № 8126
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 4x плюс 1 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та =5.



17
Тип 17 № 3857
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .



18
Тип 18 № 2164
i

Вы­чис­ли­те объем фи­гу­ры, по­лу­ча­е­мой вра­ще­ни­ем во­круг оси Ox дуги кри­вой y = ко­си­нус x, x при­над­ле­жит левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



19
Тип 19 № 2165
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна



20
Тип 20 № 2058
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.



21
Тип 21 № 7973
i

На ри­сун­ке изоб­ражён ромб ABCD. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров: а) \overrightarrowDB умно­жить на \overrightarrowAC, б) \overrightarrowAB умно­жить на \overrightarrowAC, в) \overrightarrowAB умно­жить на \overrightarrowAD, если DB = 12,AC = 16.



22
Тип 22 № 2691
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно



23
Тип 23 № 7924
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.



24
Тип 24 № 6965
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 17 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 16 пра­вая круг­лая скоб­ка боль­ше 1,08.



25
Тип 25 № 8067
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0= минус 3.



26
Тип 26 № 2241
i
Развернуть

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.



27
Тип 27 № 8157
i
Развернуть

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са, π ≈ 3.



28
Тип 28 № 3223
i
Развернуть

Kакова сто­и­мость ре­мон­та по­тол­ка, если сде­ла­ли на­тяж­ные по­тол­ки и на­кле­и­ли гал­те­ли?



29
Тип 29 № 3938
i
Развернуть

Ис­поль­зуя дан­ные диа­грам­мы, опре­де­ли­те, во сколь­ко раз боль­ше нефти до­бы­ва­ет­ся су­пер­ги­ган­том «Тен­гиз­шев­ройл» по срав­не­нию с «Ман­ги­ста­у­му­най­каз» (ответ за­пи­ши­те в виде обык­но­вен­ной дроби)



30
Тип 30 № 3939
i
Развернуть

Hай­ди­те раз­ни­цу гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» и гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти НКОК (Ка­ша­ган) на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).



31
Тип 31 № 7714
i

Функ­ция за­да­на урав­не­ни­ем y = 3 синус x минус 1. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 2

3) −4

4) −1


Ответ:

32
Тип 32 № 7828
i

Окруж­ность впи­са­на в рав­но­бед­рен­ный тре­уголь­ник, бо­ко­вая сто­ро­на ко­то­ро­го равна 5, а ос­но­ва­ние  — 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом впи­сан­ной окруж­но­сти и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус впи­сан­ной окруж­но­сти

1) 3

2) 6

3) 1,5

4) 12


Ответ:

33
Тип 33 № 7735
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (30; 60)

2) (8; 12]

3) [70; 90]

4) [4; 9)


Ответ:

34
Тип 34 № 7774
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7


Ответ:

35
Тип 35 № 7810
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2=1 и a_4=9. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) S20

1) 700

2) 2

3) 4

4) 350


Ответ:

36
Тип 36 № 3231
i

Вы­пол­ни­те дей­ствия  левая круг­лая скоб­ка 3 ко­рень из: на­ча­ло ар­гу­мен­та: 175 конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 63 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те минус 40 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 0,027 конец ар­гу­мен­та .



37
Тип 37 № 7785
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 67 гра­ду­сов синус 53 гра­ду­сов минус синус 23 гра­ду­сов синус 37 гра­ду­сов .



38
Тип 38 № 8070
i

Най­ди­те пер­вый член ариф­ме­ти­че­ской про­грес­сии с раз­но­стью 8, если сумма пер­вых 20 ее чле­нов равна сумме сле­ду­ю­щих за ними 10 чле­нов.



39
Тип 39 № 8109
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.



40
Тип 40 № 2465
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.


Завершить работу, свериться с ответами, увидеть решения.