Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 6821
1.  
i

Число, об­рат­ное числу 2,5, равно

1) 0,5
2) 1,5
3) 0,4
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2.  
i

Най­ди­те z, если \mathfrak Im z=3, z=x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка плюс 4 плюс левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка минус 9 пра­вая круг­лая скоб­ка i.

1) z=6 плюс 3i
2) z= минус 16 плюс 3i
3) z=16 плюс 3i
4) z=16 минус 3i
3.  
i

Сумма числа 3 и зна­че­ния част­но­го чисел 24 и 6 равна

1) 6
2) 10
3) 9
4) 7
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус 780 гра­ду­сов пра­вая круг­лая скоб­ка .

1) −2
2) −4
3) 4
4) 6
5.  
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 3a в квад­ра­те , зна­ме­на­тель: 2b конец дроби пра­вая круг­лая скоб­ка в кубе умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 2b в квад­ра­те , зна­ме­на­тель: 3a в кубе конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .

1)  дробь: чис­ли­тель: a, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: b, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 3 b, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 3 a, зна­ме­на­тель: 2 конец дроби
6.  
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: x в квад­ра­те минус x минус 2, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби =0.

1) 1; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) 0; 1
3) 2
4) −1
7.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) вы­чис­ли­те сумму x0 + y0.
1) −4
2) 1
3) −1
4) −3
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та минус 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 3 конец дроби .

1) 1
2)  бес­ко­неч­ность
3) 0
4) 5
9.  
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.

1) 4
2) 5
3) 2
4) 3
10.  
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.

1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
11.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 5x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 30 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 20 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 15 конец дроби
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 1; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
13.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 7 до 11, левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка в квад­ра­те dx.

1)  дробь: чис­ли­тель: 74240, зна­ме­на­тель: 221 конец дроби
2)  дробь: чис­ли­тель: 74240, зна­ме­на­тель: 231 конец дроби
3)  дробь: чис­ли­тель: 73540, зна­ме­на­тель: 227 конец дроби
4)  дробь: чис­ли­тель: 75670, зна­ме­на­тель: 223 конец дроби
14.  
i

В со­рев­но­ва­нии по би­ат­ло­ну участ­ву­ют спортс­ме­ны из 34 стран, одна из ко­то­рых Бра­зи­лия. Всего на старт вышло 80 участ­ни­ков, из ко­то­рых 16 из Па­раг­вая. По­ря­док стар­та опре­де­ля­ет­ся жре­би­ем, стар­ту­ют друг за дру­гом. Ка­ко­ва ве­ро­ят­ность того, что де­ся­тым стар­то­вал спортс­мен из Па­раг­вая?

1) 0,1
2) 0,2
3) 0,3
4) 0,15
15.  
i

Из круга ра­ди­у­сом 10 вы­ре­за­ли квад­рат наи­боль­ше­го раз­ме­ра. Пло­щадь остав­шей­ся части круга при  Пи = 3,14 равна

1) 212
2) 126
3) 38
4) 114
16.  
i

Точки A(−2; 5) и B (4; 17) яв­ля­ют­ся кон­ца­ми от­рез­ка AB. Точка N при­над­ле­жит от­рез­ку АВ, при­чем рас­сто­я­ние от нее до точки А в 2 раза боль­ше, чем до точки B. Опре­де­ли­те ко­ор­ди­на­ты точки N.

1) (1;11)
2) (1;13)
3) (2;13)
4) (1;12)
17.  
i

Про­из­ве­де­ние кор­ней урав­не­ния 1,5 в сте­пе­ни левая круг­лая скоб­ка 2 x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 27 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
18.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 2 в сте­пе­ни y =64,xy=8. конец си­сте­мы .

1) (−2; −4)
2) (−2; −4) и (−4; −2)
3) (2; 4) и (4; 2)
4) (−1; −8) и (−8; −1)
19.  
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе минус дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби плюс x в кубе
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус x в кубе плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус x в квад­ра­те плюс дробь: чис­ли­тель: 11, зна­ме­на­тель: 3 конец дроби
20.  
i

Ра­ди­ус шара равен 12 см. Най­ди­те ра­ди­ус се­че­ния шара, если плос­кость се­че­ния со­став­ля­ет угол 45° с ра­ди­у­сом, про­ве­ден­ным в точку се­че­ния ле­жа­щую на сфере.

1) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
2) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та  см
4) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та  см
21.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Вы­со­та шатра равна:

1) 4 м
2) 3 м
3) 2 м
4) 6 м
22.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Ра­ди­ус ниж­не­го ос­но­ва­ния шатра равен?

1) 1,5 м
2) 2,5 м
3) 2 м
4) 1 м
23.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дри­че­ской части шатра  левая круг­лая скоб­ка Пи \approx3 пра­вая круг­лая скоб­ка .

1) 30 м2
2) 20 м2
3) 15 м2
4) 10 м2
24.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Опре­де­ли­те длину об­ра­зу­ю­щей верх­ней части шатра?

1) 2 ко­рень из 2 м
2) 3 ко­рень из 2 м
3)  ко­рень из 3 м
4) 2 ко­рень из 3 м
25.  
i

Цир­ко­вой шатер имеет форму ци­лин­дра с по­став­лен­ным на него усе­чен­ным ко­ну­сом. Диа­метр ос­но­ва­ния ци­лин­дра равен 5 м, диа­метр верх­не­го ос­но­ва­ния усе­чен­но­го ко­ну­са равен 1 м. Вы­со­ты ци­лин­дра и усе­чен­но­го ко­ну­са равны 2 м.

Бо­ко­вая по­верх­ность, верх­ней части шатра равна  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка

1) 9 ко­рень из 2 м в квад­ра­те
2) 18 ко­рень из 3 м в квад­ра­те
3) 9 ко­рень из 3 м в квад­ра­те
4) 18 ко­рень из 2 м в квад­ра­те
26.  
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).

1) 33
2) 42
3) 32
4) 40
5) 34
6) 36
27.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка синус x боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби \ пра­вая квад­рат­ная скоб­ка .

1) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
2) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
3) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
4) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
5) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
6) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс Пи k пра­вая круг­лая скоб­ка
28.  
i

Вы­чис­ли­те \absx в квад­ра­те плюс y в квад­ра­те минус 2xy при x = −3 и y = 2.

1) 20
2) 30
3) 36
4) 25
5) 48
6) 37
29.  
i

Вы­бе­ри­те все пря­мые, ко­то­рые пер­пен­ди­ку­ляр­ны урав­не­нию ка­са­тель­ной, про­ве­ден­ной к гра­фи­ку функ­ции y = 2x в кубе минус 3x в квад­ра­те плюс 6x минус 7 в точке x0 = 1.

1) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс 5
2) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x минус 2
3) y=6 x минус ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
4) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x минус 2
5) y= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
6) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
30.  
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 4. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.

1) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та
3) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 48 конец ар­гу­мен­та
31.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка 1 плюс i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 9 пра­вая круг­лая скоб­ка .

1) 16 минус 48i в квад­ра­те
2)  минус 18 плюс 48i
3)  минус 16 плюс 48i
4)  минус 16 плюс 48i в сте­пе­ни 5
5) 10 плюс 48i
6)  минус 16 плюс 50i
32.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит про­из­ве­де­ние x · y, где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x в квад­ра­те плюс y в квад­ра­те пра­вая круг­лая скоб­ка =2, ло­га­рифм по ос­но­ва­нию 2 x минус 2= ло­га­рифм по ос­но­ва­нию 2 3 минус ло­га­рифм по ос­но­ва­нию 2 y. конец си­сте­мы .

1) [3; 15]
2) (0; 13)
3) [−4; 1]
4) (2; 17)
5) [−4; 10]
6) [1; 5]
33.  
i

Одна из диа­го­на­лей па­рал­ле­ло­грам­ма пер­пен­ди­ку­ляр­на сто­ро­не. Най­ди­те эту диа­го­наль и пло­щадь па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 16 см, а раз­ность смеж­ных сто­рон равна 2 см.

1) 36 см2
2) 4 см
3) 13 см
4) 5 см
5) 4 см
6) 12 см2
34.  
i

В гео­мет­ри­че­ской про­грес­сии b_3 = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби и q = 3. Най­ди­те вось­мой член про­грес­сии.

1) 39
2) 18
3) 9
4) 27
35.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3) 60°
4) 45°
5) 90°
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби