Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 9318
1.  
i

Ука­жи­те номер пары вза­им­но про­стых чисел.

1) 6 и 33
2) 22 и 33
3) 14 и 33
4) 14 и 22
2.  
i

Вы­чис­ли­те: i в сте­пе­ни левая круг­лая скоб­ка 24 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка плюс i в сте­пе­ни левая круг­лая скоб­ка 26 пра­вая круг­лая скоб­ка .

1) −i
2) 1
3) i
4) −1
3.  
i

Hай­ди­те зна­че­ние вы­ра­же­ния m = \left| дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 | и вы­бе­ри­те вер­ное не­ра­вен­ство среди пред­ло­жен­ных

1) m мень­ше минус 1
2) 0 мень­ше m мень­ше 1
3) m мень­ше 0
4) m боль­ше 1
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  минус 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус 135 гра­ду­сов пра­вая круг­лая скоб­ка .

1) 18
2)  минус 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) −9
4) 9
5.  
i

 ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка ac пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та равен?

1)  минус ac
2) a в квад­ра­те c в квад­ра­те
3)  минус |ac|
4) |ac|
6.  
i

Ре­ши­те урав­не­ние: 4x в сте­пе­ни 4 минус 12x в квад­ра­те плюс 9 = 0.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та и  минус ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
7.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x минус 5y =23,2x плюс 3y=9. конец си­сте­мы .

1) (6; 1)
2) (6; −1)
3) (−6; −1)
4) (2; −6)
8.  
i

Най­ди­те пре­дел в точке \undersetx\to 2\mathop\lim дробь: чис­ли­тель: 4x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те минус 16x плюс 16 конец дроби .

1)  минус бес­ко­неч­ность
2) 1
3)  бес­ко­неч­ность
4) 2
9.  
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно

1) 24
2) 45
3) 18
4) 36
10.  
i

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.

1)  дробь: чис­ли­тель: 19 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
2)  дробь: чис­ли­тель: 39 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
3) \frca27 ко­рень из 3 2 м3
4)  дробь: чис­ли­тель: 37 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби м3
11.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 24 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 16 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 16 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
12.  
i

Bычис­ли­те зна­че­ние суммы целых чисел, удо­вле­тво­ря­ю­щих си­сте­ме не­ра­венств:  си­сте­ма вы­ра­же­ний 2x плюс 5 мень­ше 3,x в квад­ра­те минус 5x мень­ше или равно 24. конец си­сте­мы .

1) −4
2) −5
3) 6
4) 5
13.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.

1)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та , зна­ме­на­тель: 11 конец дроби
2)  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
3)  дробь: чис­ли­тель: 28 ко­рень из: на­ча­ло ар­гу­мен­та: 23 конец ар­гу­мен­та , зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 8 конец дроби
14.  
i

Сколь­ко четырёхзнач­ных на­ту­раль­ных чисел за­пи­сы­ва­ют­ся циф­ра­ми 0, 1, 2, 3, 4, 5, 6, 7 и со­дер­жат ровно одну еди­ни­цу?

1) 1225
2) 343
3) 882
4) 1232
15.  
i

Чему равен угол \angle MON= альфа , если из­вест­но, что угол \angle KNM=55 гра­ду­сов .

1) 115°
2) 110°
3) 65°
4) 130°
16.  
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.

1) 39
2) 15
3) 27
4) 37
17.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.

1) 2
2) 0
3) 3
4) 1
18.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка = 4,x минус y = 4. конец си­сте­мы .

1) (13; 9)
2) (14; 10)
3) (12; 8)
4) (13; −9)
19.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 3 арк­тан­генс x плюс C
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
3)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те минус 3x минус 6 пра­вая круг­лая скоб­ка минус 2 арк­тан­генс x плюс C
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби x левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 6 пра­вая круг­лая скоб­ка плюс 2 арк­тан­генс x плюс C
20.  
i

Усе­чен­ный конус имеет вы­со­ту 12 см, а ра­ди­у­сы его верх­не­го и ниж­не­го ос­но­ва­ния равны 4 см и 20 см. Най­ди­те об­ра­зу­ю­щую усе­чен­но­го ко­ну­са.

1) 15 см
2) 20 см
3) 8 см
4) 12 см
21.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном купе СВ.

1) 4
2) 1
3) 2
4) 12
22.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.

1) 3
2) 16
3) 8
4) 12
23.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт B.

1) 812
2) 1260
3) 3072
4) 2862
24.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт А.

1) 2120
2) 680
3) 890
4) 1260
25.  
i

Cемей­ная пара со­би­ра­ет­ся в по­езд­ку на по­ез­де. В со­ста­ве по­ез­да име­ют­ся сле­ду­ю­щие типы ва­го­нов:

1) CВ — купе на 2 че­ло­ве­ка;

2) Kупе — купе на 4 че­ло­ве­ка;

3) Плац­карт А — вагон на 36 че­ло­век;

4) Плац­карт В — вагон на 54 че­ло­ве­ка;

5) Oбщий вагон — вагон на 81 че­ло­век.

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в общем ва­го­не.

1) 6480
2) 5620
3) 2862
4) 1260
26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: \left|x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та | плюс |2 x y| пра­вая круг­лая скоб­ка при x = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и y = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби .

1)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
3) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби конец ар­гу­мен­та
4) \pm ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби конец ар­гу­мен­та
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
6) \pm дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
27.  
i

Ре­ши­те урав­не­ние  синус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 4 Пи k, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 8 Пи k, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 8 Пи k, зна­ме­на­тель: 5 конец дроби
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 8 Пи k, зна­ме­на­тель: 5 конец дроби
5)  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 8 Пи k, зна­ме­на­тель: 5 конец дроби
6)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 8 Пи k, зна­ме­на­тель: 5 конец дроби
28.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния |a минус 7| минус |a| при  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби мень­ше a мень­ше дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби имеет вид:

1) −2a − 7
2) 7 − 2a
3) 2a + 7
4) 7
5) −7
6) 2a − 7
29.  
i

Закон дви­же­ния ма­те­ри­аль­ной точки задан фор­му­лой s=2t в кубе минус 2,5t в квад­ра­те минус t плюс 3 (s — в мет­рах, t — в се­кун­дах). В какой мо­мент вре­ме­ни ско­рость точки равна нулю.

1) 1,5 с
2) 3 с
3) 1 с
4) 4 с
5) 0,5 с
6) 5 с
30.  
i

Най­ди­те угол между век­то­ра­ми \overrightarrowAB и \overrightarrowCD, если A левая круг­лая скоб­ка 3;7;4 пра­вая круг­лая скоб­ка ; B левая круг­лая скоб­ка 5; минус 2;34 пра­вая круг­лая скоб­ка ; C левая круг­лая скоб­ка 4; минус 7; минус 10 пра­вая круг­лая скоб­ка ; D левая круг­лая скоб­ка 3;2;1 пра­вая круг­лая скоб­ка .

1)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
2)  арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
3)  минус арк­си­нус дробь: чис­ли­тель: 277, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 199 ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та конец ар­гу­мен­та конец дроби
4)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 330 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 199955 конец дроби пра­вая круг­лая скоб­ка
5)  арк­ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 247 ко­рень из: на­ча­ло ар­гу­мен­та: 199955 конец ар­гу­мен­та , зна­ме­на­тель: 985 конец дроби пра­вая круг­лая скоб­ка
6)  арк­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 277, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 199 ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка
31.  
i

Ре­ши­те урав­не­ние: z в кубе =i.

1) z= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
2) z=i
3) z= минус i
4) z= минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
5) z= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
6) z= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби i
32.  
i

Кор­ня­ми урав­не­ния e в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x в кубе минус 4x конец ар­гу­мен­та пра­вая круг­лая скоб­ка =1 яв­ля­ют­ся?

1) 2
2) −2
3) 0
4) 3
5) −1
6) 1
33.  
i

В тре­уголь­ни­ке ABC из­вест­но, что AB = 7,5 см, BC = 10 см и AC = 5 см. Най­ди­те все вер­ные утвер­жде­ния.

1) Угол A боль­ше угла B
2) Сумма сто­рон AC и BC в 2 раза боль­ше сто­ро­ны AB
3) Пе­ри­метр тре­уголь­ни­ка 22,5 см
4) Сто­ро­на BC мень­ше суммы сто­рон AC и AB в 1,5 раза
5) Сумма любых двух сто­рон тре­уголь­ни­ка мень­ше 11 см
6) Угол C — самый боль­шой угол тре­уголь­ни­ка ABC
34.  
i

Сумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии в 3 раза боль­ше ее пер­во­го члена. Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: b_7, зна­ме­на­тель: b_5 конец дроби .

1)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
35.  
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.

1) 7 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 145 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 245 конец ар­гу­мен­та
4) 132
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 125 конец ар­гу­мен­та
6) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та