Вариант № 590

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип Д36 A36 № 3411
i

Hай­ди­те 15% от числа 78.



2
Тип Д37 A37 № 1976
i

Вы­пол­ни­те дей­ствие  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка и опре­де­ли­те дей­стви­тель­ную часть числа



3
Тип 1 № 3202
i

Най­ди­те зна­че­ние вы­ра­же­ния  1,5 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 6,25 конец ар­гу­мен­та плюс 2 умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 11,56 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 28,09 конец ар­гу­мен­та .



4
Тип 3 № 3131
i

Най­ди­те зна­че­ние вы­ра­же­ния: 2 ко­си­нус в квад­ра­те 15 гра­ду­сов минус 2 синус в квад­ра­те 15 гра­ду­сов .



5
Тип 4 № 2606
i

При­ве­ди­те од­но­член 7a в кубе c в кубе a в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка c в сте­пе­ни 7 к стан­дарт­но­му виду.



6
Тип 5 № 3377
i

Ре­ши­те урав­не­ние: \abs2x минус 1=4.



7
Тип 6 № 2053
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x плюс 5y = 16,2x плюс 3y = 9. конец си­сте­мы .



8
Тип Д38 A38 № 4114
i

Вы­чис­ли­те пре­дел \undersetx\to бес­ко­неч­ность \mathop\lim дробь: чис­ли­тель: x в квад­ра­те плюс 2x минус 1, зна­ме­на­тель: 3x в квад­ра­те плюс 2x минус 1 конец дроби .



9
Тип 13 № 2724
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).



10
Тип 15 № 2057
i

Из точки, не при­над­ле­жа­щей плос­ко­сти, про­ве­де­ны две на­клон­ные, ко­то­рые об­ра­зу­ют с плос­ко­стью углы рав­ные 30° и 60°. Сумма длин про­ек­ций этих на­клон­ных на плос­кость равна 8. Опре­де­ли­те длину мень­шей на­клон­ной.



11
Тип 10 № 3913
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).



12
Тип 9 № 2064
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 1 боль­ше или равно 0, дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 2 мень­ше или равно 0. конец си­сте­мы .



13
Тип 14 № 4128
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до минус 1, левая круг­лая скоб­ка 6x в квад­ра­те плюс 2x минус 10 пра­вая круг­лая скоб­ка dx.



14
Тип Д39 A39 № 6800
i

В хлеб­ном от­де­ле име­ют­ся ба­то­ны бе­ло­го и чер­но­го хлеба. Сколь­ки­ми спо­со­ба­ми можно ку­пить 6 ба­то­нов?



15
Тип Д40 A40 № 2027
i

На ри­сун­ке ра­ди­у­сы ка­са­ю­щих­ся окруж­но­стей с цен­тра­ми O1 и O2 равны 7 и 3. К окруж­но­стям про­ве­де­на общая ка­са­тель­ная BC. Рас­сто­я­ние между точ­ка­ми ка­са­ния равно:



16
Тип Д41 A41 № 2135
i

Имеем A (2; 10) и В (8; 9) вер­ши­ны мень­ше­го ос­но­ва­ния тра­пе­ции. Точка пе­ре­се­че­ния диа­го­на­лей О (4; 8) делит каж­дую диа­го­наль в от­но­ше­нии 1 : 3. Най­ди­те ко­ор­ди­на­ты точки се­ре­ди­ны ниж­не­го ос­но­ва­ния тра­пе­ции.



17
Тип 23 № 2481
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.



18
Тип 17 № 3451
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .



19
Тип 7 № 4183
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 3 ко­си­нус x минус 2 синус x пра­вая круг­лая скоб­ка dx.



20
Тип 8 № 2520
i

В рав­но­сто­рон­ний конус впи­сан шар. Най­ди­те пло­щадь по­верх­но­сти шара, если об­ра­зу­ю­щая ко­ну­са равна 6 см.

(При­ме­ча­ние Решу ЕНТ: ви­ди­мо, рав­но­сто­рон­ним ко­ну­сом со­ста­ви­те­ли за­да­ния на­зы­ва­ют такой, у ко­то­ро­го осе­вое се­че­ние — рав­но­сто­рон­ний тре­уголь­ник.)



21
Тип 26 № 2101
i
Развернуть

Kакова ве­ро­ят­ность того, что про­из­ве­де­ние чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет за­кан­чи­вать­ся циф­рой 0?



22
Тип 27 № 2102
i
Развернуть

Kакова ве­ро­ят­ность, что сумма чисел, за­пи­сан­ных на кар­точ­ках, ко­то­рые вы­тя­нул Марат, мень­ше 10?



23
Тип 28 № 2103
i
Развернуть

Kакова ве­ро­ят­ность, что объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет крат­ным 2?



24
Тип 29 № 2104
i
Развернуть

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?



25
Тип 30 № 2105
i
Развернуть

Kакова ве­ро­ят­ность, что Марат смо­жет по­стро­ить тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на вы­тя­ну­тых им кар­точ­ках?



26
Тип 36 № 2211
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).



27
Тип Д42 A42 № 4623
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка тан­генс x боль­ше 1\ пра­вая квад­рат­ная скоб­ка .



28
Тип Д43 A43 № 2148
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле дроби:  дробь: чис­ли­тель: x минус y, зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x y конец ар­гу­мен­та плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: y в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка конец дроби .



29
Тип Д44 A44 № 3767
i

Ука­жи­те все целые числа из об­ла­сти опре­де­ле­ния функ­ции:

y= арк­тан­генс левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: минус x в квад­ра­те плюс 10x минус 21 конец ар­гу­мен­та конец дроби .



30
Тип Д45 A45 № 6860
i

Упро­сти­те вы­ра­же­ние: \overrightarrowFC плюс \overrightarrowMD минус \overrightarrowBE минус левая круг­лая скоб­ка \overrightarrowEA минус \overrightarrowBM пра­вая круг­лая скоб­ка плюс \overrightarrowCA.



31
Тип Д46 A46 № 4053
i

Упро­сти­те вы­ра­же­ние: i левая круг­лая скоб­ка 3 минус 2i пра­вая круг­лая скоб­ка минус 4i левая круг­лая скоб­ка 2 плюс 5i пра­вая круг­лая скоб­ка .



32
Тип Д47 A47 № 2633
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 5x минус 2y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x = y,2 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 6. конец си­сте­мы .



33
Тип Д48 A48 № 2079
i

B рав­но­бед­рен­ном тре­уголь­ни­ке с ос­но­ва­ни­ем 10, к бо­ко­вой сто­ро­не про­ве­де­на вы­со­та, рав­ная 4. Най­ди­те пло­щадь рав­но­бед­рен­но­го тре­уголь­ни­ка.



34
Тип 20 № 3347
i

Най­ди­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел крат­ных 5.



35
Тип 40 № 2430
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де ABCDF все ребра равны 1. Най­ди­те зна­че­ние угла между реб­ром FD и плос­ко­стью ос­но­ва­ния.


Завершить работу, свериться с ответами, увидеть решения.