Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 10345
1.  
i

Число, в раз­ло­же­нии ко­то­ро­го на про­стые мно­жи­те­ли есть ровно три трой­ки.

1) 51
2) 75
3) 108
4) 62
2.  
i

Вы­пол­ни­те дей­ствия, за­пи­ши­те число в ал­геб­ра­и­че­ской форме:  левая круг­лая скоб­ка 3 минус 2i пра­вая круг­лая скоб­ка плюс 2 левая круг­лая скоб­ка 5 плюс i пра­вая круг­лая скоб­ка минус 14.

1) z= минус 1 плюс 2i
2) z=1
3) z=1 минус i
4) z= минус 1
3.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 59 тан­генс 56 гра­ду­сов умно­жить на тан­генс 34 гра­ду­сов .

1) 59
2) −59
3) 118
4) −118
5.  
i

Упро­сти­те вы­ра­же­ние и за­пи­ши­те в стан­дарт­ном виде:  левая круг­лая скоб­ка a плюс 5 пра­вая круг­лая скоб­ка в квад­ра­те минус 5a левая круг­лая скоб­ка 2 минус a пра­вая круг­лая скоб­ка .

1)  минус 4 a в квад­ра­те плюс 25
2) 6 a в квад­ра­те плюс 25
3)  минус a в квад­ра­те плюс 25
4) 6 a в квад­ра­те минус 25
6.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 4, зна­ме­на­тель: 2x минус 9 конец дроби боль­ше 0.

1) (−4; 4)
2)  левая круг­лая скоб­ка минус 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4,5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy= минус 12,x левая круг­лая скоб­ка 2y минус 1 пра­вая круг­лая скоб­ка = минус 18. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние си­сте­мы, то x0 = 
1) −6
2) −16
3) 2
4) 6
8.  
i

Най­ди­те пре­дел в точке \undersetx\to 0\mathop\lim дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 1 плюс 6x конец ар­гу­мен­та плюс 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 3 конец дроби .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2)  бес­ко­неч­ность
3) 0
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
9.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).

1) 1,5 кв. ед.
2) 3 кв. ед.
3) 9 кв. ед.
4) 6 кв. ед.
10.  
i

Пусть ABCD — квад­рат, BM \perp левая круг­лая скоб­ка ABC пра­вая круг­лая скоб­ка . Най­ди­те длину от­рез­ка DM, если AB = 2 ко­рень из 3  см, а BM = 5 см.

1) 6 ко­рень из 2 см
2) 5 ко­рень из 3 см
3) 7 см
4) 6 см
11.  
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
2)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k Пи плюс 3 Пи k,k при­над­ле­жит Z
3)  \pm Пи плюс 6 Пи k,k при­над­ле­жит Z
4)  левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка в сте­пе­ни k дробь: чис­ли­тель: Пи , зна­ме­на­тель: 9 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби Пи k,k при­над­ле­жит Z
12.  
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: x в квад­ра­те плюс 16, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби мень­ше или равно дробь: чис­ли­тель: 25 плюс 8 x, зна­ме­на­тель: x в квад­ра­те минус 16 конец дроби .

1)  левая квад­рат­ная скоб­ка 1; 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4; 16 пра­вая квад­рат­ная скоб­ка
2) [1; −2)
3) (3; 4)
4)  левая круг­лая скоб­ка минус 4; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4; 9 пра­вая квад­рат­ная скоб­ка
13.  
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
14.  
i

Сколь­ки­ми спо­со­ба­ми могут быть рас­пре­де­ле­ны зо­ло­тая и се­реб­ря­ная ме­да­ли по ито­гам чем­пи­о­на­та мира по фут­бо­лу, если в со­рев­но­ва­нии участ­ву­ют 16 ко­манд?

1) 240
2) 16
3) 15
4) 256
15.  
i

На ри­сун­ке O_1O_2 = 28. Ра­ди­у­сы окруж­но­стей O_1B = 14 и O_2A = 20. Длина от­рез­ка AB равна

1) 6
2) 8
3) 9
4) 7
16.  
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 2 ; минус 1 ; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 0 ; 2 ; 1 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 1 ; 0 ; 0 пра­вая фи­гур­ная скоб­ка . Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \vecp и \vecq, если \vecp=2 \veca минус \vecb и \vecq=\veca минус 3 \vecc.

1) 39
2) 15
3) 27
4) 37
17.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.

1) 1
2) 4
3) 6
4) 7
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 7 конец ар­гу­мен­та мень­ше x, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 5 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та боль­ше 4, конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.

1) 4
2) 2
3) 1
4) 3
19.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 3x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс 2x в кубе минус 4 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби минус 4x плюс C
4)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: 3x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби плюс 4x плюс C
20.  
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.

1) 3
2) 3,5
3) 7
4) 14
21.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»

1)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
2)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 4 конец дроби см2
3)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби см2
4) 27 ко­рень из 3 см2
22.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Hай­ди­те пло­щадь по­верх­но­сти од­но­го «ребра»

1)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби см2
2)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 4 конец дроби см2
3)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
4)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
23.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?

1)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
24.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Kакой вы­со­ты долж­на быть упа­ков­ка для Пи­ра­мид­ки?

1) 3 ко­рень из 3 см
2) 5 ко­рень из 6 см
3) 3 ко­рень из 2 см
4) 3 ко­рень из 6 см
25.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Из­го­то­ви­тель вы­брал упа­ков­ку для Пи­ра­мид­ки в виде сферы. Каким дол­жен быть диа­метр упа­ков­ки?

1)  дробь: чис­ли­тель: 3 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
2)  дробь: чис­ли­тель: 2 ко­рень из 6 , зна­ме­на­тель: 3 конец дроби см
3)  дробь: чис­ли­тель: 5 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
4)  дробь: чис­ли­тель: 9 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
26.  
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: \abs минус 2,5 плюс 4,6, зна­ме­на­тель: минус 1,6 плюс \abs2 умно­жить на 3,5 минус \abs минус 4 конец дроби .

1) 1,7
2) 1,5
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
5) 1,5
6)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
27.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ левая квад­рат­ная скоб­ка \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби \ пра­вая квад­рат­ная скоб­ка .

1) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка
2) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка
3) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка
4) \bigcup\limits_k при­над­ле­жит Z левая квад­рат­ная скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка
5) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая квад­рат­ная скоб­ка
6) \bigcup\limits_k при­над­ле­жит Z левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая квад­рат­ная скоб­ка
28.  
i

После при­ве­де­ния к од­но­чле­нам стан­дарт­но­го вида най­ди­те те, у ко­то­рые сте­пень од­но­чле­на равна 10.

1)  минус 9 x в сте­пе­ни левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка y в кубе x в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка y в квад­ра­те
2) 2,4 x в квад­ра­те y в кубе умно­жить на 7 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
3) 2 x в квад­ра­те y в кубе умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка
4)  минус 0,4 x левая круг­лая скоб­ка x y в кубе пра­вая круг­лая скоб­ка в квад­ра­те
5)  минус 3 x в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка y в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка умно­жить на 2,5 x в квад­ра­те y в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
6)  минус 0,4 x y в кубе умно­жить на левая круг­лая скоб­ка x в квад­ра­те y пра­вая круг­лая скоб­ка в квад­ра­те
29.  
i

Ука­жи­те про­ме­жут­ки, в ко­то­рых лежат экс­тре­му­мы функ­ции: y = \lg левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка .

1)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 3; 0 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 1; 6 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус 8; 8 пра­вая круг­лая скоб­ка
30.  
i

На ри­сун­ке изоб­ра­жен рав­но­сто­рон­ний тре­уголь­ник ABC. Най­ди­те длины век­то­ров \overrightarrowAB минус \overrightarrowAC и \overrightarrowAB плюс \overrightarrowAC, если сто­ро­ны тре­уголь­ни­ка равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,5
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
5) 2, 6
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ,7
31.  
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 минус 7i пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка 6 плюс 4i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 плюс 2i пра­вая круг­лая скоб­ка .

1) 42 плюс 33i
2) 37 плюс 25i
3) 19 минус 3i
4) 53 плюс 33i
5) 29 минус 31i
6) 53 плюс i
32.  
i

Ука­жи­те ин­тер­ва­лы, удо­вле­тво­ря­ю­щие не­ра­вен­ству: |x в квад­ра­те минус 1| минус 3 боль­ше или равно 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
33.  
i

K плос­ко­сти квад­ра­та ABCD про­ве­ден пер­пен­ди­ку­ляр AM. Най­ди­те рас­сто­я­ние от точки M до вер­ши­ны С, если сто­ро­на квад­ра­та равна 3 см, а рас­сто­я­ние от точки M до плос­ко­сти квад­ра­та равно 4 см.

1) 8 см
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та см
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та см
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та см
5) 10 см
6) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та см
34.  
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям

1) 18; 10; 2
2) 13; 5; 1
3) 32; 8; 2
4) 27; 9; 3
5) 15; 9; 3
6) 37; 18,5; 9,25
35.  
i

Пря­мая OO1 — ось ци­лин­дра. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если пло­щадь CC1E1E равна Q.

1) 2πQ
2) πQ
3)  дробь: чис­ли­тель: Пи Q, зна­ме­на­тель: 2 конец дроби
4) 1
5) 4πQ
6) 3πQ