Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 14609
1.  
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .

1) 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус 1
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та плюс 1
4) 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 9b, зна­ме­на­тель: a минус b конец дроби умно­жить на дробь: чис­ли­тель: a в квад­ра­те минус ab, зна­ме­на­тель: 54b конец дроби и най­ди­те его зна­че­ние при a= минус 63, b=9,6.

1) −10,5
2) −21
3) 0
4) −63
3.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:

 тан­генс в квад­ра­те дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс \ctg дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби .

1) 2
2) 4
3) 0
4) 2,5
4.  
i

При­ве­ди­те од­но­член 4a в квад­ра­те b в сте­пе­ни 6 a в сте­пе­ни 5 b в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка к стан­дарт­но­му виду.

1) 4a в квад­ра­те b в сте­пе­ни 6
2) 4a в сте­пе­ни 6 b в сте­пе­ни 6
3) 4a в сте­пе­ни 7 b в сте­пе­ни 4
4) a в сте­пе­ни 7 b в сте­пе­ни 4
5.  
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7 конец дроби x минус y = 7
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 7x конец дроби минус y = минус 7
3)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби плюс y = 7
4)  дробь: чис­ли­тель: 5x, зна­ме­на­тель: 7 конец дроби минус y = минус 7
6.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
7.  
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус x в кубе плюс 3 пра­вая круг­лая скоб­ка dx.

1)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс 3x плюс C
2)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс 3x плюс C
3)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби минус 3x плюс C
4)  дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби плюс 3x плюс C
8.  
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 9, от­ли­ли треть (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.

1) 324
2) 182
3) 27
4) 243
9.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x, зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби боль­ше 2,4x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби мень­ше x. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 12 пра­вая круг­лая скоб­ка
10.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби
11.  
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции y = x в квад­ра­те плюс ко­рень из: на­ча­ло ар­гу­мен­та: 8x минус 4 конец ар­гу­мен­та плюс ко­рень из 8 в точке x0  =  1.

1) 1
2) 5
3) 2
4) 4
12.  
i

Pеше­ни­ем не­ра­вен­ства x в квад­ра­те плюс 2x минус 3 мень­ше или равно 0 яв­ля­ет­ся чис­ло­вой про­ме­жу­ток.

1) (−3; 1]
2) [−3; 1)
3) [−1; 3]
4) [−3; 1]
13.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 14 и 3, счи­тая от вер­ши­ны. Най­ди­те пе­ри­метр тре­уголь­ни­ка.

1) 10
2) 50
3) 20
4) 40
14.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 5, ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 3 плюс дробь: чис­ли­тель: 8, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка dx.

1) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 12
2) 26 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
3) 27 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 18
4) 24 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 16
15.  
i

Най­ди­те объем пра­виль­ной усе­чен­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 9 см и 25 см, а вы­со­та 18 см.

1) 4308 см3
2) 5586 см3
3) 5896 см3
4) 3888 см3
16.  
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.

1) 1
2) −2
3) −1
4) 0
17.  
i

Ре­ши­те си­сте­му урав­не­ний

Not match begin/end

и най­ди­те зна­че­ние вы­ра­же­ния x плюс y, где (x, y) — ре­ше­ние си­сте­мы.

1) 0,5
2) 1
3) −0,5
4) 0
18.  
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 8x плюс 16 и гра­фи­ком ее про­из­вод­ной.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
19.  
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?

1) 15°
2) 12°
3) 20°
4) 18°
20.  
i

Най­ди­те по­ло­жи­тель­ное число С, ко­то­рое нужно рас­по­ло­жить между чис­ла­ми А = 81 и В = 9 так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии.

1) 18
2) 27
3) 45
4) 36
21.  
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAD и \overrightarrowB_1C_1.

1) 2
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та
3) 4
4) 3
22.  
i

Упро­сти­те:  дробь: чис­ли­тель: синус 3 альфа , зна­ме­на­тель: синус альфа конец дроби минус дробь: чис­ли­тель: ко­си­нус 3 альфа , зна­ме­на­тель: ко­си­нус альфа конец дроби .

1) 0
2) 1
3) 2
4) −1
23.  
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x плюс 1 пра­вая круг­лая скоб­ка = 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 9 пра­вая круг­лая скоб­ка .

1) 1
2) 3
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
24.  
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство \ctg x боль­ше дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби .

1)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
2)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
3)  левая круг­лая скоб­ка Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
4)  левая круг­лая скоб­ка 2 Пи k; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс Пи k пра­вая круг­лая скоб­ка , k при­над­ле­жит Z
25.  
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0= минус 3.

1) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
2) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
3) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x минус дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби
4) y = дробь: чис­ли­тель: ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 9 конец дроби x плюс дробь: чис­ли­тель: 2 ко­рень 3 сте­пе­ни из 3 , зна­ме­на­тель: 3 конец дроби
26.  
i

Вы­пуск­ной бал

Це­ре­мо­нию вру­че­ния ат­те­ста­тов вы­пуск­ни­кам ре­ши­ли про­ве­сти в го­род­ском парке. По­стро­и­ли две арки в форме по­лу­кру­га с ра­ди­у­са­ми 6 м и 8 м. Сцену, где будет про­хо­дить кон­церт­ная про­грам­ма сде­ла­ли в виде боль­шо­го круга ра­ди­у­сом 5 м. На сцену по­сте­ли­ли ковер в виде рав­но­сто­рон­не­го тре­уголь­ни­ка, сто­ро­ны ко­то­ро­го от­се­ка­ют сег­мен­ты рав­ных пло­ща­дей. По­ми­мо этого ре­ши­ли со­ору­дить стенд, где будут рас­по­ло­же­ны фо­то­гра­фии вы­пуск­ни­ков в форме тра­пе­ции с ос­но­ва­ни­я­ми рав­ны­ми 10 см и 16 см и вы­со­той рав­ной 15 см.

Kакой про­цент со­став­ля­ет длина малой арки от длины боль­шой арки?

1) 40%
2) 60%
3) 50%
4) 75%
27.  

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство 	\ левая квад­рат­ная скоб­ка \ctg дробь: чис­ли­тель: 4x, зна­ме­на­тель: 3 конец дроби мень­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та \ пра­вая квад­рат­ная скоб­ка .

1) \undersetk при­над­ле­жит Z \mathop\bigcup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k пра­вая круг­лая скоб­ка
2) \undersetk при­над­ле­жит Z \mathop\bigcup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k пра­вая квад­рат­ная скоб­ка
3) \undersetk при­над­ле­жит Z \mathop\bigcup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k пра­вая круг­лая скоб­ка
4) \undersetk при­над­ле­жит Z \mathop\bigcup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби k пра­вая круг­лая скоб­ка
5) \undersetk при­над­ле­жит Z \mathop\bigcup левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби k пра­вая квад­рат­ная скоб­ка
6) \undersetk при­над­ле­жит Z \mathop\bigcup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби k; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби k пра­вая круг­лая скоб­ка
28.  
i

Драй­ве­ра­ми в неф­те­до­бы­че стра­ны оста­ют­ся три круп­ных неф­те­га­зо­вых про­ек­та — Тен­гиз, Ка­ра­ча­га­нак и Ка­ша­ган. Они вно­сят су­ще­ствен­ный вклад в эко­но­ми­че­ский рост стра­ны в сред­не­сроч­ном пе­ри­о­де. Объем до­бы­чи нефти будет расти и по про­гно­зу Ми­ни­стер­ства энер­ге­ти­ки РК к 2025 году вый­дет на уро­вень в 105 млн. тонн в год. Для этого, на всех трех ме­сто­рож­де­ни­ях, ре­а­ли­зу­ют­ся про­ек­ты даль­ней­ше­го рас­ши­ре­ния и про­дле­ния до­бы­чи.

Oпре­де­ли­те объем до­бы­чи нефти в 2020 году не­дро­поль­зо­ва­те­лем НКОК «Ка­ша­ган» в млн тонн (ответ округ­ли­те до де­ся­тых)

1) 15,2 млн тонн
2) 13,3 млн тонн
3) 10,2 млн тонн
4) 10,8 млн тонн
29.  
i

В кре­стьян­ском хо­зяй­стве взве­си­ли клуб­ни кар­то­фе­ля. Массы клуб­ней (в грам­мах) при­ве­де­ны в таб­ли­це.

6059
5759
5658
6161
5859

Най­ди­те сред­нюю массу клуб­ня кар­то­фе­ля.

1) 59,5 г
2) 57,2 г
3) 59,3 г
4) 58,8 г
30.  
i

Для из­го­тов­ле­ния сталь­ных ди­зай­нер­ских шаров, завод по­лу­чил за­го­тов­ки в виде куба. Про­грамм­ная уста­нов­ка для об­та­чи­ва­ния де­та­лей тре­бу­ет ввода ко­ор­ди­нат за­го­тов­ки в трёхмер­ном про­стран­стве. Про­грам­мист вво­дит си­сте­му ко­ор­ди­нат в вер­ши­ну куба как по­ка­за­но на ри­сун­ке.

Для из­го­тов­ле­ния де­та­ли в форме шара со­ставь­те его урав­не­ние.

1)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
2)  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
3)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =2
4)  левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка z минус 2 пра­вая круг­лая скоб­ка в квад­ра­те =4
31.  
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит при­бли­жен­ное зна­че­ние ве­ли­чи­ны угла 30°, вы­ра­жен­но­го в ра­ди­а­нах.

1) [0; 1)
2) (100; 1000]
3) (0,75; 7]
4) (0; 0,0615]
5)  левая круг­лая скоб­ка −0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
32.  
i

Их пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  ко­си­нус 60 гра­ду­сов плюс \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2) 1
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
5)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
6) 0
33.  
i

Три числа, сумма ко­то­рых равна 26, об­ра­зу­ют гео­мет­ри­че­скую про­грес­сию. Если при­ба­вить к ним со­от­вет­ствен­но 1, 6, и 3, то по­лу­чат­ся числа, об­ра­зу­ю­щие ариф­ме­ти­че­скую про­грес­сию. Найти эти числа.

1) 10
2) 2
3) 6
4) 4
5) 18
6) 14
34.  
i

Пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка y минус x пра­вая круг­лая скоб­ка = 1, 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни y = 8. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния 2x в квад­ра­те плюс y.

1) 5
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
3) 9
4) 3
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
6) 6
35.  
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.

1) 306 Пи
2)  дробь: чис­ли­тель: 200, зна­ме­на­тель: 3 конец дроби Пи
3)  дробь: чис­ли­тель: 500, зна­ме­на­тель: 3 конец дроби Пи
4) 208 Пи
5)  дробь: чис­ли­тель: 100, зна­ме­на­тель: 3 конец дроби Пи
6) 108 Пи