Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.

1) 4
2) 5
3) 2
4) 3
2.  
i

Cто­ро­ны тре­уголь­ни­ка от­но­сят­ся как 3 : 5 : 7. Най­ди­те пе­ри­метр по­доб­но­го ему тре­уголь­ни­ка, в ко­то­ром сумма наи­боль­шей и наи­мень­шей сто­рон равна 36 см.

1) 54 см
2) 58 см
3) 27 см
4) 56 см
3.  
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна

1) 10 см
2) 7 см
3) 9 см
4) 8 см
4.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры:

1) 4,5 кв. ед.
2) 3 кв. ед.
3) 1,5 кв. ед.
4) 6 кв. ед.
5.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 9 равна?

1) 48
2) 27
3) 54
4) 33
6.  
i

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 12 равна

1) 6 ко­рень из 3
2) 12 ко­рень из 5
3) 6 ко­рень из 5
4) 12 ко­рень из 2
7.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 14 и 3, счи­тая от вер­ши­ны. Най­ди­те пе­ри­метр тре­уголь­ни­ка.

1) 10
2) 50
3) 20
4) 40
8.  
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен

1)  дробь: чис­ли­тель: 84, зна­ме­на­тель: 85 конец дроби
2)  дробь: чис­ли­тель: 27, зна­ме­на­тель: 57 конец дроби
3)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 71 конец дроби
4)  дробь: чис­ли­тель: 83, зна­ме­на­тель: 170 конец дроби
9.  
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).

1) 1,5 кв. ед.
2) 3 кв. ед.
3) 9 кв. ед.
4) 6 кв. ед.
10.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
11.  
i

Bыра­зи­те в ра­ди­а­нах ве­ли­чи­ну внут­рен­не­го угла пра­виль­но­го тре­уголь­ни­ка.

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
12.  
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).

1) 90°
2) 60°
3) 135°
4) 120°
13.  
i

Тан­генс мень­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см, равен?

1) 1,4
2)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 8 конец дроби
14.  
i

Ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 10 и 24. Вы­со­та, про­ведённая к ги­по­те­ну­зе, равна

1)  целая часть: 9, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
2) 14
4)  целая часть: 6, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 13
6)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 11
15.  
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.

1) 36
2) 19
3) 18
4) 12
16.  
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.

1) 3,75
2) 2,75
3) 1,75
4) 3,25
17.  
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 15 и 2, счи­тая от вер­ши­ны. Най­ди­те длину ос­но­ва­ния тре­уголь­ни­ка.

1) 7
2) 4
3) 6
4) 2
18.  
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.

1) 32 см
2) 36 см
3) 30 см
4) 40 см
19.  
i

Сред­няя линия MN, па­рал­лель­ная сто­ро­не AC, равна по­ло­ви­не сто­ро­ны AB. Най­ди­те угол ABC, если угол BMN равен 70 гра­ду­сов .

1) 35°
2) 70°
3) 110°
4) 55°
20.  
i

Най­ди­те пло­щадь тре­уголь­ни­ка со сто­ро­на­ми 9, 40, 41.

1) 360
2) 120
3) 180
4) 240
21.  
i

Точки A(1; 1), B(3; 5) и C(7; 3) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та
3) 3
4) 4
22.  
i

Точки A(6; 2), B(2; 1) и C(4; 6) со­от­вет­ствен­но вер­ши­ны тре­уголь­ни­ка ABC. Длина ме­ди­а­ны BM равна

1) 2
2) 3,5
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
23.  
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.

1)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 9 ко­рень из 3
3)  дробь: чис­ли­тель: 3 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4) 9
24.  
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.

1)  дробь: чис­ли­тель: 25 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
2) 25 ко­рень из 3
3)  дробь: чис­ли­тель: 5 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 15 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
25.  
i

Ис­поль­зуя чер­теж, вы­чис­ли­те пло­щадь тре­уголь­ни­ка ABC.

1)  12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 12
3)  8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 8